Configurations of points and topology of real line arrangements

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topology and combinatorics of real line arrangements

We prove the existence of complexified real arrangements with the same combinatorics but different embeddings in P. Such pair of arrangements has an additional property: they admit conjugated equations on the ring of polynomials over Q( √ 5).

متن کامل

Topology of Generic Line Arrangements

Our aim is to generalize the result that two generic complex line arrangements are equivalent. In fact for a line arrangement A we associate its defining polynomial f = ∏ i(aix + biy + ci), so that A = (f = 0). We prove that the defining polynomials of two generic line arrangements are, up to a small deformation, topologically equivalent. In higher dimension the related result is that within a ...

متن کامل

Topology of real coordinate arrangements

We prove that if a simplicial complex ∆ is (nonpure) shellable, then the intersection lattice for the corresponding real coordinate subspace arrangement A∆ is homotopy equivalent to the link of the intersection of all facets of ∆. As a consequence, we show that the singularity link of A∆ is homotopy equivalent to a wedge of spheres. We also show that the complement of A∆ is homotopy equivalent ...

متن کامل

The Fundamental Group’s Structure of the Complement of Some Configurations of Real Line Arrangements

In this paper, we give a fully detailed exposition of computing fundamental groups of complements of line arrangements using the Moishezon-Teicher technique for computing the braid monodromy of a curve and the Van-Kampen theorem which induces a presentation of the fundamental group of the complement from the braid monodromy of the curve. For example, we treated the cases where the arrangement h...

متن کامل

Real line arrangements and fundamental groups

Let A be a real line arrangement in P(R), and let AC be its complexification. Let CC be the complement P (C) \ ⋃ AC. Let G be the Galois group of C/R. We construct a G-equivariant 2-dimensional strong deformation retract of CC. As an application, we give an explicit presentation of the orbifold fundamental group π1(CC//G), and deduce from it an explicit presentation of the ordinary fundamental ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Annalen

سال: 2018

ISSN: 0025-5831,1432-1807

DOI: 10.1007/s00208-018-1673-0